
AD-4A44 999 ILLINOIS WNIW AT UNISAMA-0APlO APLbE COMPUTA?1ON-o" FM tole]
FIDIN THE CON1Ot OF A UNION OF Z1O-alciS oNgCASLEI ul
AUG 79 V UIPIKI.P FP PRKARATA DRAGOV-70SC00u

UNCLASIFIED AC-16 ML

so



iii _,. ,. 112 o211M28 11 2.RI
1111 ~ *2 ."2

11111 ij11W

IIIII

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



- --

fi~q

$904



UNCLASSIFIED
,SECURITY CLASSIFICATION OF THIS PAGE {When D t Entered)

REPORT DOCUMENTATION PAGE READ CSTRUCINONS
I BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

4. TITLE (amd Subfitled S. TYPE OF REPORT & PERIOD COVERED

ING THE CONTOUR OF A UNION OF ISO-ORIENTED7

tCTANGLES ~i~~ ~
R 853"(ACT-16)'; UILU-ENG 78-2 46

7. AUTNOR(* ). CONTRACT OR GRANT NUMBER(a)'

Witold/Lipski, Jr. 4 Franco P. / NSF 978-C, 16 -
, ' .......... /-DA 9---. ,i6 -'

9. PERFORMING ORGANIZATION NAME AND AOOREIS " & I- .-K UNIT "---.,

Coordinated Science Laboratory AREA WORK UNIT NUMUERS
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1'. 'CONTROLLING OFFICE NAME AND ADDRESS ' ' -ij . 4T

Joint Services Electronics Program Is. H -NO

14. MONITORING AGENCY NAME & ADDRESS(if different from Controllind Office) IS. SECURITY CLASS. (of this report)

~~ UNCLASS IF tED
Il-. ECLASSI FICATION/ DOWNGRADING

I SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstr ct entered in Block 20. It different from Report)

EII
I • 10. SUIPLEMENTARY NOTES'

19. KEY WORDS (Continue on reverse aide It necesear and Identify by block nwmber)

Computational geometry, segment tree, contour, rectangles.

,20. AISTRACT (Continue an reverse aide of necesawy an Ide
i

y by block r)

-- t ,...,be rectangles on the plane with sides parallel to the
coordinate axes. An algorithm s described to find the contour of F - RI
U ... U %R in 0(mlogm + plog(2V/p)) time, where p is the number of edges in
the contouh. This is 0( (optimal) in the general case, and O(mlogm)
(optima)when F is wit=houtholes (then p 8m-4).

DD FA*"13 47 clTONOFI OV62ISOBOLTEUNCLASSIFIED10 / 2~01 7 AI
-- "- DO , J:' 1473 ED" IONOO I NOV. I.O'€.SECURITY CLASSIFICATION OF TNIS PAGE (W. en*4181911*04



I
I
I UILU-ENG 78-2246

I
FINDING THE CONTOUR OF A UNION OF

ISO- ORIENTED RECTANGLESby

Witold Lipski, Jr.
Franco P. Preparata

1[ This work was supported in part by the National Science Foundation under

Grant NSF MCS 78-13642 and in part by the Joint Services Electronics Program

(U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAG-29-78-C-0016.

[

Ir
Reproduction in whole or in part is permitted for any purpose of the

United States Government.

Approved for public release. Distribution unlimited.

'A



I
FINDING THE CONTOUR OF A UNION OF ISO-ORIENTED RECTANGLES

Witold Lipski, Jr. and Franco P. Preparata

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USAI
Abstract

Let Rl,...,Rm be rectangles on the plane with sides parallel to the

coordinate axes. An algorithm is described to find the contour of

2
F = R U ... U Rm in O(mlogm + plog(2m /p)) time, where p is the number of

edges in the contour. This is O(m 2 ) (optimal) in the general case, and

O(mlogm) (optimal) when F is without holes (then p - 8m-4).

Keywords and phrases: Computational geometry, segment tree, contour, rectangles.

r

~On leave from Institute of Computer Science, Polish Academy of Sciences,P.O0. Box 22, 00-901IWarsaw PKN, Poland.

This work was supported in part by the National Science Foundation under
_ Grant MCS 78-13642 and in part by the Joint Services Electronics Program

under Contract DAAG-29-78-C-0016.

-7777;

_ -1 ... L

i ] '" : i me iii I H H I/ / H NHI |



I
1

j 1. Introductton

In this paper we consider the following geometric problem. Let

RI,...,R m be rectangles in the plane with sides parallel to the coordinate

axes. The union F - R U ... U R may consist of one or more disjoint

connected components, and each component may or may not have internal holes

(note that a hole may contain in its interior some connected components of F).

The contour (boundary) of F consists of a collection of disjoint cycles

composed of (alternating) vertical and horizontal edges. By convention, any

edge is directed in such a way that we have the figure on the left while

traversing the edge; this is equivalent to saying that a cycle is oriented

clockwise if it is the boundary of a hole, and counterclockwise if it is an

external boundary of a connected component. Given RI,...,Rm, our task is to

find the contour of F - R1 U ... U R.

There are several applications which involve iso-oriented rectangles, or,

without loss of generality, rectangles whose sides are parallel to the

coordinate axes. Suffice it to mention its relevance to Very Large Scale

Integration [5], to geography and related areas [31, to computer graphics

(hidden-line problems, shadows, etc.), and two-dimensional data organization

[6]. There is also considerable theoretical interest in problems related to

the one discussed in this paper, such as finding the measure of the union of

rectangles [2], testing a set of rectangles for disjointness and reporting

all the intersections (41, etc.

2. Informal Description of the Algorithm

We informally illustrate the method, with the aid of an example. The

algorithm consists of two phases. In the first phase we find the set V of

I vertical edges of the contour (edges 1 through 10 in Fig. 1); in the second

,7

I,_.. .. , £ , + ...... ...



2

e 3  1e 6  e8

____ ___ ___ ___ ___10

e5  e7

ee

Fig. 1. An instance of the problem.

* phase we link these vertical edges by means of horizontal edges to form the

oriented cycles of the contour.

In order to obtain the set V we scan the abscissae corresponding to

vertical sides of rectangles from left to right. At a generic abscissa c,

the section J of the vertical line x - c with F is a disjoint union of

intervals. This section remains constant between two consecutive vertical

sides of the rectangles, and is updated in the scan each time one such

side is reached. If s is a vertical side of some rectangle R at abscissa c,

the portion of the contour of F contributed by s is given by s n 3 where

Jis, as usual, the union of intervals representing the set theoretical

complement of J on the line x - c (strictly speaking, J should be

understood as the section to the left or right of x - c, depending on

whether s is a left or right side of a rectangle). Storing and updating

--- .



I
3

of J, and an efficient determination of s ,q J require the use of

some nontrivial techniques and data structures and is deferred to

the next section. We assume that each of the edges in V is directed

upwards or downwards depending on whether it originates from a left or

right side of a rectangle.

We denote by (x;b,t) a vertical edge of abscissa x having b and t

(b < t) as its bottom and top ordinates, respectively; similarly,

(y;fL,r) represents a horizontal edge of ordinate y having A and r (L < r)

as its left and right abscissae, respectively.

We shall now describe the second phase of the algorithm. We first

augment the set V by adding triples (x;t,b) for all (x;b,t) in V. Notice

that every triple (x;y1 ,y 2 ) in the resulting set V* is in a one-to-one

correspondence with a vertex (x,yl) of the contour, and that every vertical

edge (x;b,t) of the contour is vepresented in V exactly twice by triples

corresponding to vertices (x,b) and (x,t) of the contour. We now sort

the triples (x;yl,y2) in V in lexicographic ascending order by (y1 ,x);

letting - (x ;bj.t ), in our example we obtain the sequence:

(x2 ;b2 ,9t2 ) (x4 ;b4,t4) (x4 ;t4,b4) (x9 ;b 9 ,t 9 ) (x9 ;t 9 ,b9 ) (xlO;tlo,b 10 )

- (x5 ;b5 't5 ) (x7;b7,t7) (xl;bl,t1) (x2 ;t2 2b2) (X;t5 ,b5) (x7;t7,b7)

(x1;tl,b1) (x3 ;b3,t3) (x6 ;b6 ,t6 ) (x8 ;b8 ,t8) (xs;t8sb 8) (x10 , t10b10 )

(x3;t3,b3) (x6,t6,b6)-

In general, let a1 ~a21 ...2a (p even) be the resulting sequence. It

is easy to see that the horizontal edges of the contour can now be obtained

as the segments joining the vertices repre ted by a~kl and a2k, for

k - 1,2 ,...,p/2. More exactly, let a2 k. (L;y,yl), a2 k- (r;yy 2 ).

It
2k12

|~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~~.. ....mkm imi,,m--,,,,, mism lllllll mIl



4

The horizontal edge (y;l,r) is assigned the direction from left

to right if either the edge corresponding to the triple (L;y,y1 ) is

directed downwards and y < yl, or if (L;y,yl) is directed upwards and

Y1 < y; otherwise we direct (y;i,r) from right to left. In our example,

the pair (al,a2) = ((x2;b2,t2),(x4;b4,t4 )), with b2 = b4, gives rise

to the horizontal edge (b2;x2,x4) which is oriented from left to right

because the edge e2 - corresponding to (x2;b2,t2 ) - is directed downwards

and b2 < t2 ; by contrast the pair (a17'a 18) =((x 8 ;t8 ,b8 ), (xlO;t 10 ,b10)),

with t8 -t 10 gives rise to the edge (t8;x8,X1 0), which is directed from

right to left because e8 is directed downwards but t8 i b It is clear

that by a single scan of the sequence a12 ..., we may produce all the

horizontal edges and doubly link them into the cycles of the contour,

in such a way that the "forward" links determining the orientation of a

cycle are consistent with the direction of edges. Then we may find

explicitly the cycles of the contour and identify each of them by a

vertical edge with the minimal value of abscissa (this can be done in

O(p) time). Notice that a cycle corresponds to the boundary of a

hole if this edge is directed upwards, and to an external portion of

boundary otherwise.

3. Efficient Determination of s n J

In order to efficiently implement the first phase of the algorithm

we propose to normalize the ordinates of horizontal edges of rectangles

(i.e., to replace each ordinate by its rank in the set of ordinates) and

to make use of a sesment tree, a data structure introduced by Bentley [21,

which we now recall.

1
-... i



5

Let a,b be integers with a < b. The segment tree T(a,b) is built

in the following recursive way. It consists of the root v with B[v] = a,

Ejv] - b, and, if b-a > 1, of a left subtree T(a,L(a+b)/2J) and right

subtree T(L(a+b)/2J,b). The roots of these subtrees are pointed to by

LSON[v] and RSON[vI, respectively. If b-a = 1 then LSON[v] = RSON[v] = A.

In our application we shall use the segment tree T(l,h) = T, where h - 2m

is the number of distinct ordinates.

As is well-known (see also the procedure INSERT below), an interval

s = [b,e] (with 1:5 b < e - h), can be subdivided into O(logm) segments, each of

which equals [B[vl,E~vYI, for som node v of T. Thus, for each v we

shall have an integer parameter Cv], which denotes the current multiplicity

of insertions of segment [B[v],E[v]] at node v. We shall also use the

parameter STATUS[v], which may assume one of three values: full, partial,

empty. Intuitively, full denotes that C[vj > 0, partial denotes that

Cv) - 0 but Ctul > 0 for some u 0 v in the subtree rooted at v, and

empty that C[u] - 0 for every u in this subtree. In our algorithm we scan

the vertical sides of the rectangles from left to right. Each left side

is inserted into T and each right side is deleted from T, so that the

current section J is always given by the union of segments [B[v],E[v]]

over all full nodes.

Suppose now that, for some node v in T, we have s - [b,e] _ [B(v],E[v]].

The contribution of v to s n J, denoted as copl(v) is given by

0 if STATUSIv]-full

compl(v) - [Emv],Ei v] a compl(LSON[v]) U compl(RSON[v]) if STATUS[v]-partial

[B(v],E[v]] if STATUSvJ-empty.

... - -- 



I
It appears therefore that s fl , can be obtained as U compl(v),

vE U
where U is the set of 0(logm) nodes of T corresponding to the

segmentation of s. Notice that s n ,i may consist of several disjoint

segments, and that any such segment is obtained as a collection of

contiguous intervals (corresponding to a collection of 0 (logm) empty

nodes of T). To insure that each contour edge be produced as a single

item, contiguous intervals have to be merged. To implement this,

the edges of s n 5 are assembled in a STACK corresponding to a bottom-

to-top scan. At the top of STACK there is always the upper extreme of

the last inserted edge (or initial portion of this edge); if the lower

extreme of the next segment to be added to STACK coincides with the

top of STACK, then the latter is deleted from STACK prior to adding

to it the upper extreme of the next segment, thereby realizing the

desired merges.

In summary, an interval s = [b,e] is inserted into T by the

operation INSERT(b,e,root(T)), where INSERT(b,e,v) is the following

recursive procedure:

1 procedure INSERT(b,e,v)
(*insert segment [b,e] at node v of segment tree*)

2 begtin
3 if (b 5 B[v]) and (E[v] - e) then
4 begin COOL(v) (*see below*)
5 C[v] :- C[v] + 1
6 end
7 else begin if b < L(B[v] + E[v])/2j then INSERT(b,e,ISON[v])

8 if L(B[vl + E[v])/2J < e then INSERT(be,RSON[v])
9 end

(*STATUS~v] is to be updated*)
10 if C[v] > 0 then STATUSv] :- full
11 else if LSON(v] - A then STATUS[v] :- empty (*v is a leaf*)
12 else if STATUS[LSON[v]] - STATUS[RSON[v]] - empty then STATUS [v] empty
13 else STATUS[v] :-.partial

|! 14 end

I77
I"RllW r ,r. , m' ..



7

We finally give the procedure COMPL(v):

1 procedure COMPL(v)
(*this procedure makes use of a STACK, which is external to it;
it pushes on STACK a sequence of segments representing the set
compl(v)*)

2 bei
3 if STATUSlv] = empty then (*compl(v) = (Bfv],Etvl]*)
4 begin if B[v] = top(STACK) then delete top(STACK) (*contiguous

segments are merged*)
5 else STACK - B[v] (*beginning of edge*)
6 STACK f E[vl (*current termination of edge*)
7 end
8 else if STATUS[v] - partial then
9 begin COMPL(LSON(v])

10 COMPL(RSON[v])
11 end
12 end

As mentioned before, a collection of vertical contour edges is

generated either in correspondence to a rectangle left side (to be

inserted into T) or to a right side (to be deleted from T). The procedure

DELETE(e,b,v) is analogous to INSERT(e,b,v). The only difference is that

in lines 4 and 5 of DELETE we have C[v] := C[v]-l and COMPL(v), respectively

(reversal of the order of updating C[v] and calling COMPL(v) reflects

the fact that for a right side the J in s n J is understood as the section

to the right of the current abscissa).

Notice that in order to guarantee the correctness of our algorithm

we should process, for any value of x, first all left sides (x;b,t) in

increasing order of b, and then all right sides in increasing order of b.

4. Performance Analysis

We shall now give a concise description of the algorithm. Each Ri

is represented by a quadruple (ti,r,bi,ti), where Li < ri, b < t and
Rz Ia [A,,rl X [b.,t i].

Step 1: Form the sets (without repetitions)

A *(A: 1 -- 1 :5 m) U Cri~ 1 i- 1 :M), B b: 1 5 i :S m) U ( ti 1 5 i M,

and sort each of them. From now on we shall identify any 1. or ri with

"PIN



8

its rank in the first ordering, and any b. or t. with its rank in the

second ordering. (Comment: In this way we transformed our problem into

an equivalent one with li, ri E [1,...,IAKJ, bi,t i E £l,...,1BI for 1 - i S-m.

Notice that 1A1,JBI <- 2m, and that all sorting operations are now doable

in O(m) time by standard bucket sorting (see e.g. [1]). The complexity of

this step is clearly 0(mlogm)).

Step 2: Construct tne segment tree T. (Comment: This requires O(m) steps.)

Step 3: Sort the set (representing all vertical sides of rectangles)

S = t(.i,left,bi,t): i 1- i < m] U ((ri.,right,biti): 1b ii < M

lexicographically by all four coordinates (assuming left < right) and

put the sorted sequence in QUEUE. (Comment: This can be done in 0(m)

time.)

Step 4: Scan the vertical sides of rectangles listed in QUEUE. Any

such side is inserted (by calling INSERT) into the segment tree T if

it is a left side, or deleted (by calling DELETE) from T if it is a

right side. Each of these op' .ations contributes a sequence of edges,

placed in STACK, which has to be emptied (outputted) each time we pass either

to the next value of abscissa, or from left to right sides with the

same abscissa (this is necessary in order to avoid incorrect merging

of edges). (Comment: The performance analysis of this step will be

done below.)

Step 5: Find the contour cycles. (Comment: This part of the algorithm

has been described in detail in Section 2 and shown to run in time O(p),

where p is the number of contour edges.)

To analyze Step 4 we shall restrict ourselves to calls of INSERT;

calls of DELETE can be handled in a similar way. The work done by INSERT

Kof ,



9

is best analyzed by recalling an interesting property of segment trees.

For any segment [b,e], let L(b,e) be the node u of T with Biu] = b and

with the maximum possible E[u] <_ e (i.e., [B[uj,E[u]] is the left-most

piece in the segmentation of [b,e]); similarly, let r(b,e) be the node u

with E[u] = e and the minimum possible B[u] b. Denote by PL and Pr the

(sets of nodes of the) paths from the root to L(b,e) and r(b,e), respectively.

It is easily seen that the segmentation of [b,e] is given by L(b,e),

r(b,e), and the right sons of PL\Pr not in P as well as the left sons

of Pr\P not in Pr" Since T is a nearly balanced tree, the length of each

of its paths is bounded by rlogm] ; thus the work done by a single call of

INSERT(b,e,root(T))- disregarding the calls of COHPL - is O(logm), since

it corresponds to traversing P U Pr and spending a fixed amount of

work at each node and possibly at its sibling.

Now we shall extend the analysis to account for the work done by COMPL.

Let (x;b,t) be the rectangle side being inserted into the segment tree.

Let [b,t] 1 J = [c1 ,c2] U ... U [c2k-l,C2k], c1 < C2 < ... < c 2k, let

v ZJ1 = (c2j-l,c2j), v2j = r(cc2j.2j), 1 S j :5 k, and let P(vi) be

the path from vi to the root of T. It is easy to see that what the

recursive procedure INSERT does, together with COMPL, is exactly the
2k

preorder traversal of the subtree with node set U P(vi). A fixed
i-l

amount of work is done at each node visited, and possibly at its
2k

sibling, so that the total work is proportional to j U P(vi) 1. In
i= 1

order to estimate the latter quantity we shall need the following

lemma, proved in Appendix A:

t~



10

Lemma 1. Let T be a binary tree with N leaves. Assume that T is

balanced so that any path from the root to a leaf is of length LlogNJ or

rlogN . Let L be a subset of nodes of T, and for every u E L denote by P(u)

the set of nodes on the path from u to the root. Then
16N

U P(u)J < JLJlog TL7
uEL

Let us denote by n. the number of disjoint pieces in s. n u, where s.
1. 1. i

is the i-th rectangle side processed in the segment tree (1 : i 5 2m).

By our lemma applied to the segment-tree (note that each of the disjoint

segments [b,e] in s i Jn contributes at most two members of set L, namely

L(b,e) and r(b,e), the work involved in processing si can be upperbounded

by Cn.log -mi for some constant C (this expression is interpreted as 0 for

n. = 0). Summing it over all i, the global work in Step 4 is upperbounded by

2m 16m 64m 2
C Z ni log n <--C p log p

where use has been made of the fact that En. does not exceed p/2, the

number of vertical edges of the contour (strictly speaking, in the

presence of overlapping vertical rectangle sides we should write

Enj <- p/2 + 2m; however, this does not affect the asymptotic

complexity of the algorithm). It is easy to see that p < 2 + 4m, so

that C p log(64m /p) = O(p log(2m 2/p)). Putting this together with the

previous comments on Steps 1, 2, 3 and 5 of the algorithm, we obtain

Theorem 2. The algorithm correctly finds the p-edge contour of a union
2

of m rectangles in time O(mlogm + p log(2m /p)).

Notice that p log(2m2 /p) is increasing in p in the range [4,m 2 + 4m],

for a > 4. This means hat if a is the only measure of the size of the input

Li ;



I
11

then the complexity of our algorithm can be written as

O(mlogm + (m2 + 4m)log(2 2/(M2 + 4m))) = O(m2 ), which is clearly optimal

(the algorithm for the same problem in [6] is of complexity O(m2 logm)).

Suppose now that F has no holes. For this case we prove in

Appendix B the following lemma:

Lemma 3. Let F = R1 U ... U Rm be without holes, and suppose it is

composed of k disjoint connected components. Denote by p the number of

edges in the contour of F. Then-p __ 8m-4k.

Therefore, in the absence of holes, the algorithm runs in time

2
O(mlogm + 8mlog(2m /p)) -O(mlogm). We shall now prove that this is

optimal, using as a computation model the RAM extended with real-number

arithmetic.

Theorem 4. The complexity of finding a contour of F = R1 U ... U Kin

where F is without holes, is 0(mlogm).

Proof. We shall show that sorting of m numbers xi, ... ,x M reduces in

O(m) time to our problem. Indeed, given xi, let Ri be the cartesian

product of the x-interval [O,xil and of the y-interval [0,M-xi], where

M - max, . i5 _ xi + 1 (see Fig. 2; without loss of generality we assume

x,...9X n > 0). It is clear that F - R1 U ... U Rm is without holes and

that from the contour of F we can obtain the sorted sequence of the xi in

0 (m) time.

b.

mm'....



12

X.

Fig. 2. Reducing sorting to finding the contour of hole-free
union of rectangles.

Finally let us note that our algorithm requires O(ix~p) storage.

It is an interesting open problem whether it can be impleme nted in

0O(mlogm + p) time.

r.

(ON
I M



Appendix A.

13

Proof of Lemma 1. It is clear that we may restrict ourselves to the case

where L is a set of leaves of the tree. Let T(L) be the tree consisting

of the nodes in U P(u), and let T0 (L) be its subtree consisting of

the root of T and those nodes v for which the father of v (or v itself)

has at least two descendants in L (see Fig. 3).

T To(L)

/0

:2II. \.

.) f i ,

L

Fig. 3. To the proof of Lemma 1.
IlI-/

.- -- -- -



14

It is easy to see that T 0(L) is a tree with ILI leaves. It is also

clear that IT(LI is m~axilmum (for a fixed ILI) if T 0(W is a balanced

top-most part of T, with ILI leaves and 21LI1 nodes. In such an

extremal case

I T(L)l < 21L1 + ILI (rlog Ni - LlogILlJ)

< jLI(2 + log N + 1 -loSILj + 1) jLjlog 161

f7

Ij



15

Appendix B

Proof of Lemma 3. We use induction on m. Our lemma is clearly true

for m - 1. Now suppose it is true for some m > 1, and consider rectangles

RI = (IiLri bi, ), 1 l5 i --- +l, where F* = R1 U ... U Rm U Rm+ is

without holes. Without loss of generality we may assume that the

rectangles are labelled so that I < 1M+l for 1 ! i S m. It is easy to

see that F - R U ... U R is without holes. Indeed RM+ 1 cannot fill a hole

in F, because RM+ lies entirely to the right of any hole in F. Suppose F

consists of k connected parts, and R M+l "glues together" q parts of F.

Notice that it necessarily means that the intersection of the left side

of R with F consists of q disjoint segments. It is easy to see that

the increase of the number of edges in the contour caused by adding

Rm+1 may come from the following sources (see Fig. 4).

Fig. 4. Adding rectangLe RM+ 1 to F R R U ... U RM.

Kk
II l ! -I ' ° --

U, , . .. . . o : : '. , : -..



16

(a) segments between the q disjoint segments

on the left side of RM+l: at most q+l

(b) similar segments on the right side of RM+I: at most q+l

(c) bottom and top side of R at most 2

(d) doubling the edges of the contour of F which

intersect both the left and right side of RM+l: at most 2q.

TOTAL at most 4q+4

Taking into account that the number of connected components of F*

is equal to k* - k-q+l, and using the inductive assumption, we obtain the

following estimate on the number of edges in the contour of F

p*<- (Sm - 4k) + (4q + 4) 8(m + 1) - 4(k - q + 1) - 8(m + 1) - 4k*.

C

U,



17

Notice that there exist hole-free unions of m rectangles with

p - 8m - 4k, for any m and any 1 5 k _ m. Every connected part of such

a union is of the form shown in Fig. 5.

5*

Fig. 5. A hole- -ree connected union of rectangles with p =8m -4.

[*

!U

K__

0 W



18

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, Mass. 1974.

2. J. L. Bentley, Solutions to Klee's rectangle problems. Unpublished
notes, Carnegie-Mellon University, 1977.

3. J. L. Bentley and M. I. Shamos, Optimal algorithms for structuring
geographic data. Proc. Symp. on Topological Data Structures for
Geographic Information Systems, Harvard, Mass. 1977, pp. 43-51.

4. J. L. Bentley and D. Wood, An optimal worst-case algorithm for reporting
intersections of rectangles. Carnegie-Mellon University, 1979.

5. U. Lauther, 4-Dimensional binary search trees as a means to speed up
associative searches in design rule verification of integrated
circuits. Journal of Design Automation and Fault-Tolerant Computing 2,
1978, pp. 241-247.

6. E. Lodi, F. Luccio, C. Mugnai, and L. Pagli, On two dimensional data
organization 1. Fundamenta Informaticae, to appear.

II;
-I

* '4,.a 4i-'-


